Chapter 4. Quantum Information Theory

4.1 Physicsof information

4.1.1 Maxwell’sdemon, Szilard’s engine and the second law

» The standard reply to “why an intelligent being cannot violate the
second law of thermodynamics?’

I::> In order to obtain one bit of information, an energy
E > kgT In2 must be dissipated.

* The quantum theory of measurement tells us

--it is possible to measure a certain observable without destroying
or dissipating the system (quantum nondemolition measurement).
--it isimpossible to delete the unknown wavefunction by a
unitary process (no deletion theorem).

U

The ultimate source of dissipation isnot acquisition of the knowledge
(measurement or copying) but erasure of the information.

U

In order to erase one bit of information, anenergy £ > kp7'In 2
must be dissipated into reservoirs. That is, clearing amemory is
thermodynamically costly.
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Maxwell’s Demon (1871) violates

Second law of thermodynamics:

* AS > 0 (reversiblevs. irreversible) «--- thermally isolated system
example: free expansion
«dS =dQ/T <---thermally open system

Entropy:
S=kpln

# of accessible
states

< 0 (entropy decrease)

Demon exor cism:

Leo Szilard
Leon Brillouin
Denis Gabor
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Szilard’ s Engine (1929)
¥ A single molecule machine %4

initial state measurement remove partition work done

1133
trapping the compression power erase memory
molecule stroke stroke (work) information
Standard reply:

A measurement costs, at least, one photon withan energy of £ > kg7 In 2

in order to distinguish a probing photon from a thermal backgrand

radiation. The dissipation of this photon energy as a heat increases the
entropy in the environment.
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Bennett’ s Reversible Measurement (1987)
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The demon cannot violate the second law:

It must discard the past information to start a new cycle.
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4.1.2 Reversible computation

The standard implementation of Boolean functions uses such primitives
as AND, NOT and FAN-OUT.

| nput Output

Ao c A B C
RO OO0 0

/ b\ 01 0

. . : 10 0
two input bits one output bit 11 1

AND circuit shown aboveisalogicaly irreversible gate. Itis
impossible to go back from the output to the input. The loss of one
bit of information coststhe energy kg7 In 2 at least.

A fundamental quantum dynamicsis areversible process, so thereis
no natural match between the standard logic primitives and future
guantum logic gates.

J

|s there any way to construct an arbitrary Boolean function by
logically reversible gates?

Conservatic logic = #of 0'sand 1's are conserved in the input and
output
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(1) unit wire

X, ¥*1  (oneunit of time evolution)
0] 0

1 1

If z =y (identical position), the unit wire represents a memory.

If x # y (different position), the unit wire represents a transmission line.

(2) Fredkin gate

u Vv

A v=u (control)

= UX, + UX "
Xq0— —oY; Y1 =% 2 (conditional cross-over)
Xyo—— —o Y, Y2 = UXy + UX;

—» time
timee—

invertiblelogic — natural match to reversible quantum process

With the unit wire and the Fredkin gate, we can implement any
Boolean function f(x) in afollowing configuration:

C
(source) O‘

xo— 1 ) | o5y=1fx

(argument) (result)
1,

(sink, garbage)
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Examples:

1 0,,1
O¢
Ao ao |
oo-HANDE - ab OR [—toa+b LC':\';L
_ bo— a
‘abiLo a a+ k:loa aooa
(3) Toffoli gate
a o— —o a When and only when a and b are
b o— - o b 1’s, cisinverted.
C o— —o C® (anb)

exclusi\}é- OR AND

oIf c= 1, Toffoli gate becomes NAND gate.
*Toffoli gate is sometimes referred to as Controlled-Controlled-NOT gate.

a
—
C

U

108



A serial adder (mod 2) by standard logic elements
Wzt ay
- —y' =Py
: 4
LY —_— —
= 3 Xt-lyt-1+ Xt-lyt-l
FAN-OUT NOT AND OR FAN-OUT

Sequential implementation by a conservatic logic cir cuit

s =it
?ﬂ: ‘::I—-er o] It
0 =7 1 1
—{?
 ~C— S Xy v o=t @y
—r 0 —r 1)
o b oL '
0 v L
FAN-OUT NOT AND OR FAN-OUT
Simplified implementation
// yt-lxt-2+yt-lxt-2
x(t—2) »
1
z! 3t —y' =y D
0
P —i?
FAN—OUIT XOR
I
2 (1=2)
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Closed (Garbageless) Conservative-L ogic Computers

Eavesdropping device
0
@ ® s

non-destructive readout of
computational results

€1 > - ] !l > —€1
source < ) lfgarbage
>4 ¢ H> B 4o ¢ | [ initial states
SR EES (R I R S R
. '-}_ . Sl _“‘ : - y,

ﬂ:.'r- eaves _"“} result

0 -dropping |

1)+ —-E':} negative image
1 = A

A closed conservatic-logic computer does not increase the entropy of
the computer’ s environment.
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4.1.3 Quantum computation
A. Quantum parallelism (D. Deutsch)
Quantum bit = qubit
hwy=alo}+bly (| +Ibf =1)
n quantum registers can represent 2" different states simultaneoudly.
o ), hw), = (alo) +bif1),) A (a[0), + byiL),)A --A (3,10}, + b))
= aa,---a;|03]0},--10j,
tag, -b,103,10}, 113,

+ sz"'bn|31|l)z“'|l>n
1st 2nd

R

I3, =]00----- 1)

n-th registor

> 20 different states

2" -1\ =11.-----
P 1), 1

103+

input state for each register: hp. )=

I
:hpl)llpz)"lwn):‘/z—né_llx)

Example: n= 100 quantum registers

{1

2100 ~ 103° different input states

{1

® fy},, Simultaneous computation of ~10%0 different input states
[1 equivalent

1030x10% ... beyond the capability
matrix calculation  of any fore seeable
classical computer

G,

hp)in®
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B. Quantum simulation (R. P Feynman)

Bell’stheorem: No classical hidden variable theory can reproduce
the prediction of quantum mechanics for certain

ﬂ problems.

A certain quantum system cannot be simulated by n-bit classical
computers with a probabilistic algorithm.

Density matrix master equation » 2" 2" matrix elements
Quantum Monte-Carlo wavefunction —» 2" vectors
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