Beyond the Zipf-Mandelbrot law in quantitative linguistics

Marcelo A. Montemurro
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba,
Ciudad Universitaria, 5000 Córdoba, Argentina

In this paper the Zipf-Mandelbrot law is revisited in the context of linguistics. Despite its widespread popularity the Zipf-Mandelbrot law can only describe the statistical behaviour of a rather restricted fraction of the total number of words contained in some given corpus. In particular, we focus our attention on the important deviations that become statistically relevant as larger corpora are considered and that ultimately could be understood as salient features of the underlying complex process of language generation. Finally, it is shown that all the different observed regimes can be accurately encompassed within a single mathematical framework recently introduced by C. Tsallis.

Keywords: Zipf-Mandelbrot law, Language.

Pacs Numbers: 89.75.Fb—Structure and organization in complex systems, 89.90.+n—Other topics in areas of applied and interdisciplinary Physics (restricted to new topics in section 89)

I. INTRODUCTION

In 1932 George Zipf [1] put forward an empirical observation on certain statistical regularities of human writings that has become the most well known statement of quantitative linguistics. He found that in a given text corpus there is an approximate mathematical relation between the frequency of occurrence of each word and its rank in the list of all the words used in the text ordered by decreasing frequency. He also pointed out similar relations that hold in other contexts as well [2,3], however, in this work we shall just concentrate on its applications in linguistics.

Let us identify a particular word by an index \(s \) equal to its rank, and by \(f(s) \) the normalised frequency of occurrence of that word, that is, the number of times it appears in the text divided by the total number of words \(N \). Then, Zipf’s law states that the following relation holds approximately:

\[
f(s) = \frac{A}{s^\alpha}, \tag{1}
\]

where the exponent \(\alpha \) takes on a value slightly greater than 1, and \(A \) is a normalising constant. Although this is a strong quantitative statement with ubiquitous applicability attested over a vast repertoire of human languages, some observations are in place. First, Zipf’s law in its original form as we have written it, can at most account for the statistical behaviour of words frequencies in a rather limited zone in the middle-low to low range of the rank variable. Even in the case of long single texts Zipf’s law renders an acceptable fit in the small window between \(s \approx 100 \) and \(s \approx 2000 \), which does not represent a significant fraction of any literary vocabulary. Second, the modification introduced by Mandelbrot [3] by using arguments on the fractal structure of lexical trees, though valuable in terms of possible insights into the statistical manifestations derived from the hierarchical structure of languages, has not a notorious impact on quantitative agreements with empirical data. In fact, the only improvement over the original form of the law is that it fits more adequately the region corresponding to the lowest ranks, that is \(s < 100 \), dominated by function words. The generalised form proposed by Mandelbrot can be written as follows:

\[
f(s) = \frac{A}{(1 + Cs)^{\alpha}}, \tag{2}
\]

where \(C \) is a second parameter that needs to be adjusted to fit the data.

It has been shown that this form of the law is also obeyed by random processes that can be mapped onto texts [4,5], hence ruling out any sufficient character for linguistic depth inherent to the Zipf-Mandelbrot law. Nevertheless, it has been argued that it is possible to discriminate between human writings and stochastic versions of texts precisely by looking at statistical properties of words that fall beyond the scope where equation (2) holds [6].

In this paper two complementary goals are pursued. In the first place we wish to display evidence on the statistical significance of the non Zipfian behaviour that emerges as a robust feature when large corpora are considered. Second, we shall present a complete mathematical framework by which we redefine Zipf’s law in order to describe in a precise manner the empirical frequency - rank distributions of words in human writings over the whole range of the rank variable. We believe that an accurate phenomenological understanding can throw light in the search of plausible microscopic models as well as dictate necessary features that those models should eventually comply with. Moreover, the variety of mechanisms that have been proposed to explain Zipf-Mandelbrot law [4,5,7,8] do not predict any anomaly associated to high-rank words. Whence, the genuine statistical features that we will address in our analysis may lead to a more reliable hallmark of complexity in human writings.
II. STATISTICAL EVIDENCE FOR A REFORMULATION OF ZIPF’S LAW

Generally, Zipf’s plots obtained for single texts suffer from a lack of sufficient statistics in the region corresponding to high values of the rank variable, that is, for words that appear just a few number of times in the whole text. Possibly, that may have been one of the reasons why so little attention has been devoted so far to the distribution of words from \(s \approx 2000 \) onwards. To resolve the behaviour of those words we need a significant increase in volume of data, probably exceeding the length of any conceivable single text. Still, at the same time it is desirable to maintain as high a degree of homogeneity in the texts as possible, in the hope of revealing a more complex phenomenology than that simply originating from a bulk average of a wide range of disparate sources.

In the Zipf’s graphs we show in this paper, the presented data points correspond to averages over non overlapping windows on the rank variable, centred at the displayed points. The windows’ widths are constant in the logarithmic scale and this average is done in order to smooth local fluctuations in the data.

![Graph](image)

FIG. 1. Last section of a Zipf plot where we show the actual data and the averaged values we use to represent the data. The region of highest ranks is dominated by the long plateaux associated with very infrequent words. Usually the last one or two points ought to be discarded. The data correspond to a collection of 56 books by Charles Dickens.

Figure 1 shows the last part of a typical Zipf plot for a large text corpus depicting the actual data together with the averaged values. The step-like plateaux are a finite size effect due to words that appear just a few number of times and are indeed a consequence of poor statistics for the highest values of the rank. The last one of these plateaux, which is also the longest, corresponds to hapaxes, that is words that appear just once in the text. Therefore, in any quantitative discussion on the form of the frequency-rank distribution some of the last points, usually one or two, should be disregarded on the basis of the foregoing observations.

Along these lines, in Figure 2 we show the Zipf’s graphs obtained for four large corpora, each gathering several works from four different authors respectively. In the figures, \(N \) represents the total number of tokens present in the corpus, and \(V \) the vocabulary size. It is only when we start to analyse large samples like these that robust statistical features begin to emerge in the region belonging to the higher ranks. The most conspicuous observation is that all the curves start to depart from the power-law regime at approximately \(s \approx 2000 – 3000 \), and then all have a tendency to a faster decay that is slightly different for each curve. All the curves roughly agree in the region where Zip’s law holds and each again has a different behaviour in the lowest ranks. In total three regimes are clearly distinguished in the four data sets.

It is also interesting to note that despite the vocabularies and styles vary in the four corpora considered, the natural divisions in the qualitatively different regimes look very similar. More specifically, whereas the intervals on the rank axis that cover the first two regimes are roughly of the same size for all the four corpora, the difference in vocabulary length reflects on the differences in the length of the fast-decaying tails for each corpus. This suggests that regardless of the different sizes of the texts considered, the vocabularies can be divided into two parts of distinct nature [9,10]: one of basic usage whose overall linguistic structure leads to the Zipf-Mandelbrot law, and a second part containing more specific words with a less flexible syntactic function.

![Graph](image)

FIG. 2. Frequency-rank distribution of words for four large text samples. In order to reveal individual variations these corpora are built with literary works of four different authors respectively. The vertical dash line is placed approximately where Zip’s law ceases to hold.

The question now may arise as to whether there is a kind of asymptotic behaviour as even larger corpora are
analysed. It is clear that in order to answer this we are compelled to release a certain degree the constraints on homogeneity and consider samples from various authors and styles. In Figure 3 we show the frequency-rank distribution of words in a very large corpus made up of 2606 books written in English comprising nearly 1.2GB of ASCII data. The total number of tokens in this case rose to 183403300 with a vocabulary size of 448359 different words. It is remarkable that the point at which the departure from Zipf’s law takes place has just moved to $r \approx 6000$ despite the increase in sample size. However, the striking new feature is that the form of the distribution for high ranks reveals as a second power law regime. This last result is an independent confirmation of a similar phenomenology observed by Ferrer and Solé in a very large corpus made up of a collection of samples of modern English, both written and spoken, each no longer than 45000 words \[9\]. There, they found that the second power law regime was characterised by a decay exponent close to -2. However, a precise direct measurement of this decay exponent poses some difficulty since the last portion of the Zipf plot may still be affected by the poor statistics of very infrequent words. That may translate into a slight underestimation of the absolute value of the exponent. Despite this caveat, in Figure 3 we have also shown a pure power law with decay exponent $\alpha = 2.3$, solely as a visual reference.

![Fig. 3. Zipf’s plot for a large corpus comprising 2606 books in English (N = 183403300, V = 448359).](image)

The main purpose of this section was to show that even though there is a restricted domain in which the universality of Zipf’s law seems to be valid, new and solid statistical regularities emerge as the sample size is increased. These regularities are no less impressive than the original observations made by G. K. Zipf, and, furthermore, they might be more deeply related to particular features of the complex process of language generation.

In the next section we will present a mathematical model within which all the phenomenology discussed here can be quantitatively described.

III. THE MATHEMATICAL MODEL

We start from the simple observation that the Zipf-Mandelbrot law satisfies the following first order differential equation, as can be verified by direct substitution:

$$\frac{df}{ds} = -\lambda f^q$$

(3)

The solutions to equation (3) asymptotically take the form of pure power laws with decay exponent $1/(q-1)$. It is possible to modify this expression in order to include a crossover to another regime, as in the following more general equation:

$$\frac{df}{ds} = -\mu f^r - (\lambda - \mu) f^q$$

(4)

where we have added a new parameter and a new exponent. In the case $1 \leq r < q$ and $\mu \neq 0$ the effect of the new additions is to allow the presence of two global regimes characterised by the dominance of either exponent depending on the particular value of f.

The use of this equation in the realm of linguistics was originally suggested by C. Tsallis \[11\], and it had previously been used to describe experimental data on the re-association in folded proteins \[12\] within the framework of non-extensive Statistical Mechanics \[13\]. It is worth mentioning here that the Zipf-Mandelbrot law for words, equation (2), has been related to Tsallis’ generalised Thermodynamics by means of heuristic arguments based on the fractal structure of symbolic sequences with long-range correlations \[14\].

Some qualitative features of the solutions of equation (4) can be grasped by analysing different possibilities for the involved parameters. We summarise those in the following three representative cases and refer the reader to reference \[12\] for a more complete discussion:

- Let us note first that by taking $r = q > 1$, or equivalently $\mu = 0$ and $q > 1$, we recover equation (3) the usual form of Zipf-Mandelbrot law, since by direct integration we have

$$f(s) = \frac{1}{1 + (q - 1)s\lambda}^{\frac{1}{q-1}}$$

(5)

where we chose $f(0) = 1$.

- Now, letting $r = 1$ and taking $q > 1$ one obtains
\[f(s) = \frac{1}{[1 - \frac{\lambda}{\mu} + \frac{\mu}{\lambda}(q - 1)\mu s]^{1/\gamma}}. \] \tag{6}

This expression shows a very interesting behaviour for \(\mu << \lambda \), since for small values of \(s \) it reduces to equation (6) and then for larger values of \(s \) it undergoes a crossover to an exponential decay.

- Finally let us consider the more general situation \(1 < r < q \). In this case the integration yields

\[
s = \frac{1}{\mu} \left\{ \frac{\Gamma(-r+1) - \left(\frac{\lambda}{\mu} - 1\right)}{r-1} \right. \times \left[\frac{1+q-2r}{1+q-2r} \right. \\
- H(1; q-2r, q-r, \frac{\lambda}{\mu}) \left. \right] \right\}, \tag{7}
\]

with the definition

\[H(a; b, c) = \frac{\Gamma(1+a)}{\Gamma(1+b/a) \Gamma(1+c/b)} \]

where \(\Gamma \) is the hypergeometric function. In this case the solution presents a crossover between two power law regimes. By direct examination of the right hand side of equation (6), it can be seen that where \((\lambda/\mu - 1)/(-1/q-r) \gg f \) the solution takes the form

\[f(s) \sim ((q-1)\lambda s)^{(-1/q-r)} \]

and where \((\lambda/\mu - 1)/(-1/q-r) \ll f \) it becomes

\[f(s) \sim ((r-1)\lambda s)^{(-1/(r-1))}. \]

In all the above discussion the constant of integration was chosen in such a way that \(f(0) = 1 \), however in order to introduce a different normalisation it is possible to include a normalising constant \(A \) as a change of scale in the dependent variable, \(f \rightarrow f/A \).

The analytical expression for the rank distribution in the general case, equation (6), is rather cumbersome to work with. However, it is possible to derive a much simpler relation for the probability density function \(p_f(f) \).

The value of the rank for a word with a normalised frequency of occurrence \(f \), can be written in the following way:

\[s(f) = \int_f^\infty Np_f(f') df'. \tag{9} \]

This can be seen by noting that \(Np_f'(f') \) gives the number of words that appear with normalised frequency \(f' \), thus the corresponding position in the rank list of a word with frequency \(f \) equals the total number of words that have frequency greater or equal than \(f \). In addition, we can also write:

\[s(f) = \int_f^\infty -\frac{ds}{df'} df'. \tag{10} \]

Since expressions (9) and (10) hold for any value of \(f \), the following relation can be established:

\[p_f(f) \propto \frac{-ds}{df}. \tag{11} \]

Moreover, the proportionality with the probability density as a function of \(n = Nf \) is straightforward since

\[p_f(f) = Np_n(n). \]

Finally, all these considerations allow us to write the following relation between the probability densities and equation (6):

\[p_n(n) = \frac{1}{N} p_f(f) \propto \frac{1}{\mu f_r + (\lambda - \mu) f^q} \tag{12} \]

This result is particularly interesting in view of the mathematical simplicity of equation (12). Thereby, in essence we can interpret differential equation (6) as a model for the functional form of \(p_n(n) \).

Now we proceed to test the phenomenological scenario, we have just deployed against empirical data from actual text sources. In Figures 4 and 5 we can see the fit obtained with equation (6) for two of the large text samples already used in Figure 2. Whereas Zipf-Mandelbrot law would have only fitted a small percentage of the total vocabulary present in these corpora, equation (6) captures the behaviour of the frequency-rank distribution along the whole range of the rank variable.

![FIG. 4. Frequency-rank distribution for a corpus made up of 36 plays by William Shakespeare (circles) together with a fit (full line) by equation (6).](image-url)
Figure 7 depicts the frequency-rank distribution for the same corpus compared with a plot of equation (7) using the best fit parameters presented in Figure 6. In this case the parameter that controls the second power law regime takes the value \(r = 1.32 \), indicating an asymptotic decay exponent close to \(-3\). In the Figure the range of the rank variable was extended in order to make evident the whole transient between the two power law regimes. Notwithstanding the good fit along the whole set of data points, it is clear that a larger text corpus would be necessary in order to see a fully developed power law decay in the highest ranks that could allow a direct measure of the exponent free from finite size effects.

FIG. 5. Frequency-rank distribution for a corpus made up of 56 books by Charles Dickens (circles) together with a fit (full line) by equation (6).

FIG. 6. Probability density function \(p_n(n) \) vs. \(n \) for the large corpus of literary English and the best fit obtained with equation (12). The straight lines show pure power laws that correspond to the asymptotic forms of equation (12).

IV. SUMMARY AND CONCLUSIONS

The statistical evidence we have presented in this work has shown that beyond the universal features described in the narrow range of validity of Zipf-Mandelbrot law, lies a vast region spanning along the rank axes where a non trivial macroscopic behaviour emerges when large text corpora are considered. We have noticed that the majority of the words fall in the non Zipfian regime showing a systematic and robust statistical behaviour. We have also discussed the natural division of words into two different kind of vocabularies, each prone to distinct linguistic usage. For large text samples with a high degree of homogeneity we found that words for which the value of their rank \(s < 3000 \) obey Zip-Mandelbrot law regardless of text length. The rest of the words, whose number may differ considerably, all fall in the fast decaying tails that we recognised in Figure 2. A more profound study of these features could possibly shed light on aspects of how language is used and processed by individuals. Stepping up two orders of magnitude in text size a new and more interesting behaviour was noticed in agreement with previous studies. The analysis of a huge corpus shows the collective use of language by a society of individuals, and more complex features were indeed observed as confirmed by the second power law regime for words beyond \(s \approx 5000 \). Moreover, all the variants of the non trivial phenomenology we have just discussed could be encompassed within a single mathematical framework that accurately accounts for all the observed features. After the evidence supplied by this work it seems quite plausible that there may be a deep connection between differential equation (4) and the actual processes underlying the generation of syntactic language.
V. ACKNOWLEDGEMENTS

I am deeply indebted to Constantino Tsallis and Damián Zanette for all their suggestions and very insightful observations. I also thank F. A. Tamarit, S. A. Cannas and P. Pury for valuable discussions after reading the original manuscript.

The text files analysed in this paper were supplied by Project Gutenberg Etext. [13]

This work was partially supported by the Secretary of Science and Technology of the Universidad Nacional de Córdoba, Argentina.