Computing Krippendorff’s Alpha-Reliability

Krippendorff’s alpha (o) is a reliability coefficient developed to measure the agreement
between observers, coders, judges, raters, or measuring instruments. It emerged in content
analysis but is widely applicable wherever two or more methods of processing data are applied to
the same set of objects, units of analysis, or items and the question is how much they agree.

o’s general form is:

where D, is the observed disagreement:
1 2
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and D, is the disagreement one would expect when the coding of units is attributable to chance
rather than to the properties of these units:
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D, =m;§nc RIS metricsck

The terms of the two disagreements will be defined and their computation exemplified below.

When observers agree perfectly, observed disagreement D,=0 and o=1, which indicates perfect
reliability. When observers agree as if chance had produced the results, D,=D. and o=0, which
indicates the absence of reliability. o would measures 0 if observers failed to observe and made
up their data by throwing dice. When 0=0, data are totally uninformative of anything outside the
process of generating them. Thus, for reliability considerations, o’s range is:

— Systematic disagreement
+ Sampling errors

12&20{

Unlike other specialized coefficients, o is a generalization of several reliability indices. It

enables researchers to judge a variety of data with the same reliability standards. o applies to:
e Any number of observers, not just two

Any number of categories, scale values, or measures

Any metric or level of measurement (nominal, ordinal, interval, ratio, and more)

Incomplete or missing data

Large and small sample sizes alike, not requiring a minimum

o evaluates reliability one variable at a time. It offers other analytical possibilities not presented
here.



Reliability data duplicate the process whose reliability is in question. Given such data, o-
reliability can be computed in four computational steps, graphed below.
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These four computational steps will be defined and demonstrated by four kinds of data of
increasing generality:

A. Binary or dichotomous data, two observers, no missing data

B. Nominal data, two observers, no missing data

C. Nominal data, multiple observers, missing data

D. All metrics, multiple observers, missing data

A. Binary or dichotomous data, two observers, no missing data

@ Construct a reliability data matrix; here, a 2 observer-by-r unit matrix, containing 2r
values, ¢ and k:

Units: 1 2 ... u cen r
Observers: it|ci cno ... Ciu ... Cir
jilcit cpo ... Ciu Cir

For example, when two observers judge ten units, the 2-by-10 matrix contains 20 values:
Items judged: 1 2 3 4 5 6 7 &8 9 10

Meg: ([0 1 0 0 0 0 1 0

Owen: |1 1 1 0 1 0 0 0

0 0
0 0

@ Tabulate coincidences within units. Coincidence matrices account for the values contained
in the reliability data matrix. They differ from the familiar contingency matrices, which account
for units, not values. The importance of this difference becomes apparent in C. Into a
coincidence matrix, units are entered twice, once as ¢-k pair and once as k-c¢ pair. In the
example, unit 7 is entered as a 0-1 pair of values and as a 1-0 pair of values. Unit 2 is entered as
two 1-1 pairs of values, etc.:

Values: 0 1 0 1
0 000 O01[Ng 0({10 4 |14
1 010 O11{1M1 114 2 6
Number of Values: ng niln 14 6|20

Where o represents the ten 0-0 pairs within units 4, 5, 7, 8, and 10. oo, represents the four 0-1
pairs in units 1, 3, 6, and 9, and o0;¢ represents the four 1-0 pairs in the same units. o;; represents
the two 1-1 pairs found only in unit 2. ny=14 is the number of 0s in the reliability data matrix,
n;=6 is the number of 1s, and n=2r=20 is the total.



For A and only for these data, all mismatching coincidences are in two cells, 09;=01¢, here =4.

©) skip
D -1-
@ Compute o-reliability: binary O = 1——> =1_M
De nO . nl
: (20 - 1)- 4
In the example: oy @ =1~ @-b4 095

B. Nominal data, two observers, no missing data

@ Construct a reliability data matrix — just as in A above. For a 2-by-12 example:
Items judged: 1 2 3 4 5 6 7 & 9 10 11 12

Ben: a a b b d ¢ ¢ ¢ e d d a

Gerry: b a b b b ¢ ¢ ¢ e d d d

@ Tabulate coincidences within units. Generically, and for the above example, the
coincidence matrix is now:

Values: 1 . k. abcde
1 O11. O1x . . |Iq a2 1 . 1 4
b|1 4 . 1 6
o . . c|. . 6 . 6
€0 . Ok - . |Ne= 2k Ock d{1 1. 4 |6
o . . e | . .. 202
n . ng. .| nXZkO0ck 4 6 6 6 2|24

Where Ock = 2oy Number of ¢-k pairsinunitu  specifically: 0, =1 a-b pair in unit 1
Oba = 1 b-a pair in unit 1
0aa = 2 a-a pairs in unit 2
Obb = 4 = 2 b-b pairs in unit 3
+ 2 b-b pairs in unit 4
and so forth.
n,=4 is the number of as
ny=6 is the number of bs
and so forth.
n =24 is the total number of values
in the reliability data matrix

(M=DY 0= nlne =)
nominal® = - >
n(n—-1)— ZC n.(n, -1
In the example: e (24—-1)Q2+4+6+4+2)— (44 —-1)+3[6(6—1)]+2(2—1)) _ 692

2424-1)—(44-1)+36(6—1)]+2(2-1))

© skip

@ Compute a-reliability




C. Nominal data, multiple observers, missing data

@ Construct a reliability data matrix — just as in A and in B above, but for m observers:

Units u: 7 2 . . . u . . . . . r
Observers: 1/ ¢y ¢ - . . Cwu . . .« . . Cir

i Cit Cip . . . Ciu . . . . . Cir

j Ci1 Ci2 . . . Cju . . . . - Cjr

m| Cni Cm2 - . . Cmu . . . . Cmr

Number of valuesinu: mim, . . . my . . . . . m

When data are missing, the numbers m, of values in columns or units u are variable.

For a 4 observers-by-12 units example:

Unitsu: 1 2 3 4 5 6 7 8 9 10 11 12
Observer A: |1 2 3 3 2 1 4 1 2
Observer B: 1 2 3 3 2 2 4 1 2 5 . .
ObserverC: |. 3 3 3 2 3 4 2 2 5 1 3
ObserverD: |1 2 3 3 2 4 4 1 2 5 1 .
Number m, of valuesinunitu: 3 4 4 4 4 4 4 4 4 3 2 1|41

Note that 7 out of the 48 possible values in this matrix are missing. m, varies from 1 to 4.

@ Tabulate coincidences within units. The coincidence matrix appears as in B:

Values: 1. k. . 12 3 45
1({01;. 0 . . |y 17431313 .19
2 (4310 4313 . |13
31343 813 . |10
C|0c . Ok - . | N= 2k Ock 4 313134 .| 5
o . . 5. . . . 3|3
n . ng. .Iln=XX ng 9 13 10 5 340

Number of ¢ - k pairs in unit u

But, unlike in B: o, = Z

u
Note that each unit contains my(m,—1) coincidences (pairs of values) that a coincidence matrix

needs to account for. Unit 1 contains 3(3—1)=6 pairs of matching values 1. It contributes 6/(3-
1)=3 to the oy; cell, one for each value. Unit 2 contains 4(4-1)=12 pairs, 6 matching 2-2 pairs, 3
mismatching 2-3 pairs, and 3 mismatching 3-2 pairs. It adds 6/(4-1)=2 to 022, 3/(4-1)=1 to 023, 1
to 032, and 4 to the total n, thus fully accounting for its 4 values. Unit 6 contains 4/(4-1)=12 pairs
of mismatching values, each adds 1/(4-1)=1/3 to a different cell. The lone value 3 in unit 72
affords no comparisons and does not add to this account. Thus, the margins do not represent the
41 values that occur in the reliability data matrix, only the n=40 values that can be matched

within units.

m, —1

® Skip
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@ Compute o-reliability — just as in B nominal 0 =1——>== ¢ ¢
De  n(n-D-) nc(n.—1)
C

_(A0—1)(7+10+8+4+3)—(9(9—1)+13(13-1)+10(10 - 1) + 5(5 - 1+3(3 1))

In the example: | jminai© = =.743
40(40-1)=(9(9-1)+13(13-1)+10(10— 1)+ 5(5—-1+3(3 1))

D. Any metric, multiple observers, missing data

@ Construct a reliability data matrix — just as in C
® Tabulate coincidences within units — just asin C

® Insert the difference function metrics(z;k that is appropriate to the metric of the given data into

the two disagreements D, and D, defined above.

Note that o accounts for different metrics or levels of measurement by weighing the observed
(and expected) coincidences by the squared difference between the coinciding values.
Differences can be expressed as mathematical functions and in the form of a table. The latter
makes their relative magnitudes transparent. Interval and ratio metric differences are functions
of the values being paired. Ordinal differences depend on their frequencies of using values. And

nominal differences are added here to generalize step @.

¢ Nominal metric differences — Two values either match, or they do not:

Nominal categories, names: a b ¢ d e f
al0 1 1 1 1 1
_ b1 0o 1 1 1 1
2 0 iffc=k
nominal®ck :{1 iffc £k o bt
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e Ordinal metric differences — Values have the meaning of ranks and differences between
ranks depend on how many ranks they are apart from each other. For example, with
frequencies from data in C (and one unused rank added to show that it does not matter):

RankS lst 2nd 3!'(‘1 4th Sth 6t]1

1 | 0 1122253032534 | myg = 9

I

—
5 2" 121 0 11.5% 197 21.5% 23% | nga=13 8113=22.5
j

I—

]

1

]

62 — D¢ §g<k 0k rd 2 2 2 \ 4
ordinal ck — 74_ >Cng +7 3 506 132 0 7.5 10° 11.5 N3q = 10

where c<k 4™ 1900 361 56 0 25 4| ng= 5

A

5™ 1992 462 100 63 0 1.5%| nsp= 0 Sy =4

6™ (1156529 132 16 23 0| ngn= 3 v

e Interval metric differences — Values differ algebraically:
Interval values: -1 0 1 2 3 4

10 1727 3 45
0(1 o0 1> 22 3 4
intervala(z;k:(c_k)2 1]4 0 1* 2% 3
2 4 1 0 17 22
3|16 4 0 1°
412516 9 4 1 0

e Ratio metric differences — Algebraic differences between two values are expressed
relative to an absolute zero point. They are proportional to the magnitude of their values:
Ratio values: 0 1 2 3 4 5

0 PG @ @D G
0 @ @@
110 ' @) 3]
2504 0 @)
36 .11 .02 0 2
44 18 .06 .01 0

2
D Zzock metric Sck
0 :1_(n_1) c k>c -
D Zznc "Dk metric Sck
¢ k>c

In this computational formula, note that the sums enumerate only one of the two symmetrical
off-diagonal triangles of the coincidence matrices oc.
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@ Compute a-reliability:  metric & =1—



Computations are demonstrated with the numerical data in C, interpreted as ordinal, interval and
ratio data respectively. Zero frequencies are omitted from the lists of multiplications:

2
z z O ¢k ordinal Sck

With data in C as ordinal data: ordinal O = c_k>c
Z Z D¢ "Ny ordinal Sck
c k>c
In the Example:
4

31 12%2252%302 +§1 1.52+%192 +%7.52
dina@=1-(40-1) — 815
orama 91312 49-10-225249-5-30F 49-3- 38 +13-10- 1152 +13-5- 1 +13-3-23 +10-5-7.52 +10-3- 1152 +5-3- 4

2
Z Z Ock interval Sck

With data in C as interval data: interval O = c_k>c :
Z Z "Nk interval Sck
¢ k>c
In the example:
4 1 1 4 1 1
SRR Tk pa i i, EF, L

37 737 "3 37 '3
: o=1-(40-1) =.849
interval 9.13-1249:10-2249.5-3249.3.42 +13-10- 12 +13-5-22 +13-3-32 410-5-12+10-3-22 +5.3-12

52
ZZ Ock ratio ck
With data in C as ratio data: ratio O = c_k>c

Z Z RN ratlo

¢ k>c

In the example:
417 122 13 412 122 112

o) 32 32732 392 3¢ 372
rati =1 (40 ) 12 22 32 42 12 22 32 12 22 12
913—2+9 10—2+95—2+93—2+1310 +13-5. +133—+105—+103—2+53—
3 4 5 6 s 6 7 7 8 9

=797

Software for these and related computations is currently being developed.
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