NEWS AND VIEWS
QUANTUM COMPUTERS

Certainty froia uncertainty

Charles H. Bennett

QUANTUM mechanics is best known for
its uncertainty principle, but now physi-
cists and computer scientists have found
that quantum mechanics can also serve
as a source of certainty. Quantum effects
within a computer can be used, in princi-
ple, to solve quickly and with complete
certainty some kinds of problem that a
classical computer could only soive very
slowly, or else with a small chance of
errori-),

The extra power of quantum compu-
ters arises from the ability of a quantum
system, when it is not being observed, to
be in many places at the same time. A
single photon making its way through a
snowball, for example, simultancously
follows all possible optical paths through
the snowball, and emerges in a way that
is determined by the constructive and
destructive interference among all the
paths

interference

A single quantum computer could simi-
larly, in principle, follow many distinct
computation paths all at the same time
and produce a final output depending on
the interference of all of them. Although
a number of obstacles* appear to stand
in the way of achieving controllable
interference among computation paths in
a practical quantum computer, there has
been much recent progress in under-
standing how, in principle, the possibility
of such interference makes the theory of
quantum computation differ from its
somewhat better understood classical
counterpart.

An early but probably vain hope was
that quantum parallelism might provide
a fast way of solving problems such as
factoring or the travelling-salesman
problem, which appear to be hard in the
same way as finding a needle in a
haystack is hard, that is because they
involve a search for a successful solution
among exponentially many candidates.
A computer able to test all the candi-
dates in parallel, and signal un:unbi-
guously if it iound one that wa-:ed,
would solve these problems ex;: ien-
tially faster than known methods

It is easy to program a quantum om-
puter to branch out into exponentially
many computation paths; the difficult
part is getting the paths to interfere in a
useful way at the end, so that the answer
comes out with a non-negligible prob-
ability. This difficulty is illustrated by the
factoring problem above. Suppose the
qQuantum computer is programmed to
factor a 100-digit number by trying in
parallel to divide it by all numbers of
fifty digits or fewer. If any of these

approximately 10* computations yields a
zero remainder, it will in a sense have
solved the problem. But if there is only
one successful path, the interference pat-
tern among all the paths, which deter-
mines the behaviour of the computer as
a whole, will scarcely be affected. Quan-
tum computers cannot amplify an answer
found on a single computation to a
detectable level because interference is
an additive process, to which each path
contributes only as much weight as it
started out with.

Therefore, a quantum computer’s
chance of quickly solving a problem of
this type is no greater than that of a
classical stochastic computer, which can
choose a single computation path ran-
domly. For interference to achicve any-
thing useful, it must be applied to prob-
lems whose solution depends on many
computation paths.

The recent spate of progress in quan-
tum computation stems from a paper by
David Deutsch of Oxford University and
Richard Jozsa, now at Université de
Montréal'. The authors use a quantum
computer to determine global properties
of a boolean function f of an n-bit
argument, by having the computer
branch into 2" computation paths, one
for each value of the argument x. They
show that the computer can then cause
the paths to interfere in such a way as to
determine, quickly and with no chance
of error, whether the function f is ‘unani-
mous’ (flx)=0 or fix)=1 for all x) or
‘balanced’ (f{x)=0 for exactly half the x
values and f(x)=1 for the other half).

A classical computer, by contrast, lim-
ited to testing arguments one at a time,
might find unanimity among all the fix)
it had tested so far, but would still not be
able absolutely to rule out the ‘balanced’
possibility until it had tested more than
half the paths, a job requiring an ex-
ponentially increasing amount of time. If
we are unwilling to tolerate any chance
of error, the problem of distinguishing
balanced from unanimous functions can
be solved quickly on a quantum compu-
ter but not on a classical one. On the
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other hand, if even a tiny chance of error
is allowed, a classical stochastic compu-
ter could also solve the problem quickly,
by testing a few dozen x values at
random, then declaring the function to
be unanimous if they all agreed.

In the figure, the top left bar shows a
unanimous function and the bar below it
a balanced function for a toy example
with n=7 and 128 x values. Although the
global difference between these two bars
is obvious to the eye, a classical compu-
ter, limited to testing points one at a
time, would need to test over half the x
values to be sure the upper bar was

imous. A single q computer,
by contrast, could quickly and surely
detect the global difference by pursuing
128 computation paths in parallel and
causing them to interfere.

Ethan Bemnstein and Umesh Vazirani
at the University of California at Ber-
keley have strengthened Deutsch and
Jozsa's result? by showing that the same
qQuantum computer that distinguishes
unanimous from balanced functions can
also (and still with no chance of error)
distinguish among 2"-1 kinds of bal-
anced functions. The bars on the right
of the figure show two of these functions
in the toy example: a quantum computer
could distinguish these functions from
each other and from 125 other balanced
functions, most of which would look
confusingly similar to the naked eye.
The class of balanced functions distin-
guishable by quantum computation (the
so-called Walsh functions) are of inde-
pendent mathematical interest, being
boolean analogues of the basis functions
used in Fourier analysis.

Complexity

What, then, is the relation between
the powers of quantum and classical
computation? As is well known, classical
computational complexity theory suffers
from a humiliating inability to answer
some of its most basic questions, such as
whether the two complexity classes — P,
for deterministic polynomial time, and
NP, for nondeterministic polynomial
time — are equal. [n consequence, the
factoring and travelling-salesman prob-
lems alluded to earlier are merely
thought, not known, to be hard. This
frustrating situation arises because, in a
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A quantum computer can quickly and with certainty distinguish a unanimous function (top,
left) from a balanced function (for example. bottom. left). It can also distinguish between a
large number of subtly different balanced functions, such as those on the right.
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real problem, alternative computation
paths are not independent — for exam-
ple, in factoring, if a number is divisible
by 6 then it will certainly be divisible
by 3. Thus one cannot be sure that there
is not a much faster way of solving
the problem than by blind search: either
of these problems might tumn out to
be more like finding a needle in a
department store than finding one in a
haystack.

_ Unable to answer their biggest ques-
tions, complexity theorists have re-
treated to proving two lesser kinds of
theorems: oracle results and complete-
ness results. Oracle results concern the
power of computers that can ask ques-
tions of a black box without being
allowed to look inside it. The f functions
considered above are an example of an
oracle. Because Deutsch and Jozsa's
proof does not allow the computer to
‘open the box’ and examine the instruc-
tions for calculating f, it is not an abso-
lute proof that quantum computers are
more powerful than classical ones,
merely a proof that they are more
powerful if certain kinds of f functions
exist — functions that are balanced or
unanimous, but whose instructions can-
not easily be analysed to determine
which. Gilles Brassard of Montréal and
Andre Berthiaume?®, now at Oxford, as
well as Bemstein and Vazirani? have
proved a number of oracle results based
on Deutsch and Jozsa's construction,
which characterize in considerable detail
the power of oracle-assisted quantum
computers relative to their oracle-
assisted classical analogues. The bravest
of these results is a family of oracle
problems which are easy for quantum
computers but not for classical ones,
even when the latter are allowed to
make errors.

The other approach, the completeness
approach, eschews oracles and is based
instead on finding problems that,
although not known to be hard, can be
proved to be at least as hard as any other
problem in a given class. Thus, in classi-
cal complexity theory, the travelling-
salesman problem is called NP-complete
because all other problems in the class
NP can be reduced to it. It may similarly
be possible to characterize the power of
quantum computation by finding prob-
lems that are provably at least as hard
as any problem in a given qQuantum
complexity class.
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