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Dissipation, Information, Computational
Complexity and the Definition of
Organization

I address two questions belonging to an interdisciplinary area between statisti-
cal mechanics and the theory of computation:

1. What is the proper measure of intrinsic complexity to apply to states of a
physical system?

2. What role does thermodynamic irreversibility play in enabling systems to
evolve spontaneously toward states of high complexity?

. INTRODUCTION

A fundamental problem for statistical mechanics is to explain why dissipative sys-
tems (those in which entropy is continually being produced and removed to the
surroundings) tend to undergo “self-organization,” a spontaneous increase of struc-
tural complexity, of which the most extreme example is the origin and evolution of
life. The converse principle, namely that nothing very interesting 15 likely to happen
in a system at thermal equilibrium, is reflected in the term “heat death.” In the
modern world view, thermodynamic driving forces, such as the temperature differ-
ence between the hot sun and the cold night sky, have taken over one of the functions
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of God: they make matter transcend its clod-like nature and behave instead in dra-
matic and unforseen ways, for example molding itself into thunderstorms, people,
and umbrellas.

The notion that dissipation begets self-organization has remained informal, and
not susceptible to rigorous proof or refutation, largely through lack of an adequate
mathematical definition of organization. Section II, after reviewing alternative def-
initions, proposes that organization be defined as “logical depth,” a notion based
on algorithmic information and computational time complexity. Informally, logical
depth is the number of steps in the deductive or causal path connecting a thing with
its plausible origin. The theory of computation is invoked to formalize this notion as
the time required by a universal computer to compute the object in question from
a program that could not itself have been computed from a more concise program.

Having settled on a definition of organization, we address briefly in section III
the problem of characterizing the conditions (in particular, thermodynamic irre-
versibility) under which physical systems evolve toward states of high organization.
We do not solve this problem, but rather suggest that it can be reduced to several
other problems, some of which can already be regarded as solved, some of which are
promising areas of research, and some of which are well-known unsolved problems
in mathematics (notably the P=PSPACE question).

Il. THE PROBLEM OF DEFINING ORGANIZATION

Just what is it that distinguishes an “organized” or “complex” structure like the
human body from, say, a crystal or a gas? Candidates for a definition of organization
can be divided into those based on function and those based on structure.

A. FUNCTIONAL DEFINITIONS

Living organisms are noted for their capacity for complex function in an appropri-
ate environment, in particular the ability to grow, metabolize, reproduce, adapt,
and mutate. While this functional characterization may be a good way to define
“life,” in distinction to nonliving phenomena that possess some but not all of life’s
attributes (e.g., a crystal’s trivial growth; a flame’s metabolism), it is not really
a satisfactory way to define organization. We should still like to be able to call
organized such functionally inert objects as a frozen human body, a printout of the
human genome, or a car with a dead battery. In other words, what we need is not
a definition of life or organism (probably inherently fuzzy concepts anyway), but
rather a definition for the kind of structural complexity that in our world is chiefly
found in living organisms and their artifacts, a kind that can be produced to a
lesser degree by laboratory experiments in “self-organization,” but which is absent
from such structurally trivial objects as gases and crystals.
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Another functional characterization of complexity, more mathematical in fla-
vor than the lifelike properties mentioned above, is as the capacity for universal
computation. A computationally universal system is one that can be programmed,
through its initial conditions, to simulate any digital computation. For example,
the computational universality of the well-known deterministic cellular automaton
of Conway called the “game of life” implies that one can find an initial configu-
ration that will evolve so as to turn a certain site on if and only if white has a
winning strategy at chess, another initial configuration that will do so if and only
if the millionth decimal digit of pi is a 7, and so on. On a grander scale, one can
in principle find initial conditions enabling the Conway automaton to simulate any
physical or chemical process that can be digitally simulated, even presumably the
geological and biological evolution of the earth.

The property of computational universality was originally demonstrated for
irreversible, noiseless systems such as Turing machines and deterministic cellular
automata having little resemblance to the systems ordinarily studied in mechanics
and statistical mechanics. Later, some reversible, deterministic systems (e.g., the
hard sphere gas [Fredkin-Toffoli, 1982] with appropriate initial and boundary condi-
tions, and Margolus’ billiard ball cellular automaton [Margolus, 1984] which models
this gas) have been shown to be computationally universal. Very recently [Gacs,
1983; Gacs-Reif, 1985], certain irreversible, noisy systems (probabilistic cellular au-
tomata in 1 and 3 dimensions with all local transition probabilities positive) have
been shown to be universal. Computational universality, therefore, now appears to
be a property that realistic physical systems can have; moreover, if a physical sys-
tem does have that property, it is by definition capable of behavior as complex as
any that can be digitally simulated.

However, computational universality is an unsuitable complexity measure for
our purposes because it is a functional property of systems rather than a structural
property of states. In other words, it does not distinguish between a system merely
capable of complex behavior and one in which the complex behavior has actually
occurred. The complexity measure we will ultimately advocate, called logical depth,
is closely related to the notion of universal computation, but it allows complexity
to increase as it intuitively should in the course of a “self-organizing” system’s time
development.

B. THERMODYNAMIC POTENTIALS

In spite of the well-known ability of dissipative systems to lower their entropy at the
expense of their surroundings, flouting the spirit of the second law while they obey
its letter, organization cannot be directly identified with thermodynamic potentials
such as entropy or free energy: the human body is intermediate in entropy between
a crystal and a gas; and a bottle of sterile nutrient solution has higher free energy,
but lower subjective organization, than the bacterial culture it would turn into if
inocculated with a single bacterium.
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This difference in free energy means that, even without the seed bacterium,
the transformation from nutrients to bacteria (albeit an improbable case of sponta-
neous biogenesis) is still vastly more improbable case of spontaneous biogenesis) is
still vastly more probable than the reverse transformation, from bacteria to sterile,
high free-energy nutrients. The situation is analogous to the crystallization of a
long-lived supersaturated solution: although crystallization without the catalytic
assistance of a seed crystal may be so slow as to be unobservable in practice, it is
not thermodynamically forbidden, and is, in fact, overwhelmingly more probable
than the reverse process.

Subjective organization seems to obey a “slow growth law” which states that,
except by alucky accident, organization cannot increase quickly in any deterministic
or probabilistic process, but it can increase slowly. It is this law which forbids
sterile nutrient from turning into bacteria in the laboratory, but allows a similar
transformation over geological time. If the slow growth law is to be obeyed, the
rapid multiplication of bacteria after inocculation must not represent much increase
in organization, beyond that already present in the seed bacterium. This, in turn,
means that subjective organization is not additive: 1 bacterium contains much more
organization that 0 bacteria, but 2 sibling bacteria contain about the same amount
as 1.

C. INFORMATION CONTENT

The apparent non-additivity of “organization” suggest another definition for it,
namely as information content, an object’s information content being the number
of bits required to specify it uniquely. Clearly, two large message-like objects (e.g.,
DNA molecules), if they happen to be identical, do not together contain significantly
more information than one alone.

This subsection will review various definitions of information, especially the
algorithmic definition implied by the phrase “pumber of bits necessary to specify
a structure uniquely.” However, it should be pointed out that information in this
sense, like entropy, leads to absurd conclusions when used as the measure of sub-
jective organization: just as the human body is intermediate in entropy between a
crystal and a gas, so the human genome is intermediate in information between a
totally redundant sequence, e.g., AAAAA. .., of near zero information content and
a purely random sequence of maximal information content. Although information
itself is a poor measure of organization, it will be discussed at some length because
it underlies two of the more adequate organization measures to be discussed later,
vis. mutual information and logical depth.

There is some uncertainty as to how the “information content” of biological
molecules ought to be defined. The easiest definition is simply as the information
capacily of the molecule, e.g., 2N bits for a DNA molecule of N nucleotides. This
definition is not very useful, since it assigns all sequences of a given length the same
information content.
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In the classical formulation of Shannon, information is an essentially statistical
property. The information content in bits of a message is defined as the negative
base-2 logarithm of its probability of having been emitted by some source, and it
is improper to treat information content as if it were a function of the message
itself, without specifying the probability. This is rather awkward in a biological
context, where one is frequently faced with a bare message, e.g., a DNA sequence,
without any indication of its probability. The information capacity is equivalent to
assuming a uniform probability distribution over all sequences. It would be more
informative to define the information content of a sequence z as its -log probability
in some physically specified distribution, such as an (equilibrium or nonequilibrium)
statistical mechanical ensemble. However, this approach departs from the goal of
making the definition of organization intrinsic to the sequence.

A third approach to defining information is as the number of bits necessary
to uniquely describe an object in some absolute sense, rather than with respect
to a particular probability distribution. This approach has been put on a firm
mathematical basis by regarding the digital object = as the output of a universal
computer (e.g., a universal Turing machine), and defining its algorithmic informa-
tion content H(z) as the number of bits in its “minimal algorithmic description”
z+, where z# is the smallest binary input string that causes the universal computer
to produce exactly z as its output. Clearly this definition depends on the choice
of universal computer, but this arbitrariness leads only to an additive O(1) uncer-
tainty (typically & a few thousand bits) in the value of H(z), because of the ability
of universal machines to simulate one another. Algorithmic information theory also
allows randomness to be defined for individual strings: a string is called “algorith-
mically random” if it is incompressible, i.e., if its minimal description is about the
same size as the string itself. Algorithmic information is discussed further in the
introductory article by Chaitin [1975], and in review articles by Zvonkin and Levin
[1970] and Chaitin [1977].

The advantage of using a universal computer to regenerate the message is that,
for sufficiently long messages, it subsumes all other more specialized schemes of ef-
fective description and data compression, e.g., the use of a dictionary of abbreviated
encodings for frequently occurring subsequences. Any non-universal scheme of data
compression fails to compress some sequences of obviously low information content.
For example, the sequence consisting of the first million digits of pi, though it ad-
mits a concise algorithmic description, probably cannot be significantly compressed
by abbreviating frequent sequences.

As noted above, information per se does not provide a good measure of or-
ganization, inasmuch as messages of maximal information content, such as those
produced by coin tossing, are among the least organized sul-jectively. Typical orga-
nized objects, on the other hand, precisely because they are partially constrained
and determined by the need to encode coherent function or meaning, contains less
information than random sequences of the same length; and this information reflects
not their organization, but their residual randomness.

For example, the information content of a genome, as defined above, repre-
sents the extent to which it is underdetermined by the constraint of viability. The
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existence of noncoding DNA, and the several percent differences between proteins
performing apparently identical furictions in different species, make it clear that a
sizable fraction of the genetic coding capacity is given over to transmitting such
“frozen accidents,” evolutionary choices that might just as well have been made
otherwise.

D. MUTUAL INFORMATION AND LONG-RANGE ORDER

A better way of applying information theory to the definition of organization is
suggested by the nonadditivity of subjective organization. Subjectively organized
objects generally have the property that their parts are correlated: two parts taken
together typically require fewer bits to describe than the same two parts taken sepa-
rately. This difference, the mutual in formation between the parts, is the algorithmic
counterpart of the non-additivity of statistical or thermodynamic entropy between
the two parts. In many contexts, e.g., communication through a noisy channel, the
mutual information between a message and something else can be viewed as the
“meaningful” part of the message’s information, the rest being meaningless infor-
mation or “noise.”

A body is said to have long-range order if even arbitrarily remote parts of it
are correlated. However, crystals have long-range order but are not subjectively
very complex. Organization has more to do with the amount of long-range cor-
relation, i.e., the number of bits of mutual information between remote parts of
the body. Although we will ultimately recommend a different organization mea-
sure (logical depth), remote mutual information merits some discussion, because
it is characteristically formed by nonequilibrium processes, and can apparently be
present only in small amounts at thermal equilibrium. Notions similar to mutual
information have been introduced in many discussions of biological organization,
but often without clearly distinguishing among gross information content (i.e., ac-
cidental or arbitrary aspects of the object as a whole), mutual information (amount
of correlation between parts that individually are accidental and arbitrary), and de-
termined, non-accidental aspects of the object as a whole which, as argued above,
are not information at all, but rather a form of redundancy.

If two cells are taken from opposite ends of a multicellular organism, they
will have a large amount of mutual information, if for no other reason than the
presence in each cell of the same genome with the same load of frozen accidents. As
indicated earlier, it is reasonably certain that at least several percent of the coding
capacity of natural genomes is used to transmit frozen accidents, and, hence, that
the mutual information between parts of a higher organism is at least in the hundred
megabit range. More generally, mutual information exists between remote parts of
an organism (or a genome, or a book) because the parts contain evidence of a
common, somewhat accidental history, and because they must function together in
a way that imposes correlations between the parts without strictly determining the
structure of any one part. An attractive feature of remote mutual information for
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physical systems is that it tends to a finite limit as the fineness of coarse graining
is increased, unlike simple information or entropy in a classical system.

Since mutual information arises when an accident occurring in one place is repli-
cated or propagated to another remote place, its creation is an almost unavoidable
side effect of reproduction in a probabilistic environment. Another obvious connec-
tion between mutual information and biology is the growth of mutual information
between an organism and its environment when the organism adapts or learns.

Further support for remote mutual information as an organization measure
comes from the fact that systems stable at thermal equilibrium, even those with
long-range order, exhibit much less of it than nonequilibrium systems. Correla-
tions in systems at equilibrium are generally of two kinds: short-range correlations
involving a large number of bits of information (e.g., the frozen-in correlations be-
tween adjacent lattice planes of an ice crystal, or the instantaneous correlations
between atomic positions in adjacent regions of any solid or liquid), and long-range
correlations involving only a few bits of information. These latter include correla-
tions associated with conserved quantities in a canonical or microcanonical ensemble
(e.g., if one half of a gas cylinder contains more than half the atoms, the other half
will contain fewer than half of the atoms) and correlations associated with order
parameters such as magnetization and crystal lattice orientation. In either case, the
amount of mutual information due to long-range correlations is small: for example,
in a gas of 10?3 atoms, conservation of the number of atoms causes the entropy of
the whole to be about logv'1023 & 39 bits less than the sum of the entropies of its
halves. It may at first seem that a real-valued order parameter, such as phase or
orientation of a crystal lattice, already represents an infinite amount of informa-
tion; however, in an N-atom crystal, owing to thermal and zero-point fluctuations,
the instantaneous microstate of the entire crystal suffices to determine such order
parameters only to about log N bits precision; and, hence, the mutual information
between remote regions of a macroscopic crystal amounts to only a few dozen bits.

Unfortunately, some subjectively not-very-organized objects also contain large
amounts of remote mutual information. For example, consider an igneous rock or
other polycrystalline solid formed under nonequilibrium conditions. Such solids,
though not subjectively very “organized,” typically contain extended crystal de-
fects such as dislocations and grain boundaries, which presumably carry many bits
of information forward from the earlier-crystallized to the later-crystallized portions
of the specimen, thus giving rise to the correlated frozen accidents that constitute
mutual information. On a larger scale, terrestrial and planetary geological processes
create large amounts of mutual information in the form of complementary fracture

-surfaces on widely separated rock fragments. Mutual information does not obey the
slow growth law, since an ordinary piece of glass, after a few minutes of hammer-
ing and stirring, would be transformed into a three-dimensional jigsaw puzzle with
more of it than any genome or book. Even larger amounts of mutual information
could be produced by synthesizing a few grams of random, biologically meaningless
DNA molecules, replicating them enzymatically, and stirring the resulting mixture
to produce a sort of jigsaw-puzzle soup. Two spoonfuls of this soup would have
macroscopically less than twice the entropy of one spoonful. In all these examples,
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the mutual information is formed by nonequilibrium processes and would decay if
the system were allowed to approach a state of true thermal equilibrium, e.g., by
annealing of the separated fracture surfaces. Remote mutual information is some-
what unsatisfying as a measure of organization because it depends on accidents,
assigning low organization to some objects (such as the binary expansion of pi)
which seem organized though they lack accidents, and high organization to other
objects whose correlated accidents are of a rather trivial sort (random palindromes,
broken glass).

E. SELF-SIMILARITY

A conspicuous feature of many nontrivial objects in nature and mathematics 1s
the possession of a fractal or self-similar structure, in which a part of the object
is identical to, or is described by the same statistics as, an appropriately scaled
image of the whole. I feel that this often beautiful property is too specialized to be
an intuitively satisfactory criterion of organization because it is absent from some
intuitively organized objects, such as the decimal expansion of pi, and because, on
the other hand, self-similar structures can be produced quickly, e.g., by determin-
istic cellular automata, in violation of the slow growth law. Even so, the frequent
association of self-similarity with other forms of organization deserves comment. In
some cases, self-similarity is a side-effect of computational universality, because a
universal computer’s ability to simulate other computers gives it, in particular, the
ability to simulate itself. This makes the behavior of the computer on a subset of
its input space (e.g., all inputs beginning with some prefix p that tells the computer
to simulate itself) replicate its behavior on the whole input space.

F. LOGICAL DEPTH

The problem of defining organization is akin to that of defining the value of a
message, as opposed to its information content. A typical sequence of coin tosses
has high information content, but little message value; an ephemeris, giving the
positions of the moon and planets every day for a hundred years, has no more in-
formation than the equations of motion and initial conditions from which it was
calculated, but saves its owner the effort of recalculating these positions. The value
of a message, thus, appears to reside not in its information (its absolutely unpred-
icatble parts), nor in its obvious redundancy (verbatim repetitions, unequal digit
frequencies), but rather in what might be called its buried redundance—parts pre-
dictable only with difficulty, things the receiver could in principle have figured out
without being told, but only at considerable cost in money, time or computation.
In other words, the value of a message is the amount of mathematical or other work
plausibly done by its originator, which its receiver is saved from having to repeat.

Of course, the receiver of a message does not know exactly how it originated;
it might even have been produced by coin tossing. However, the receiver of an
obviously non-random message, such as the first million biis of pi, would reject
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this “null” hypothesis on the grounds that it entails nearly a million bits worth of
ad-hoc assumptions, and would favor an alternative hypothesis that the message
originated from some mechanism for computing pi. The plausible work involved
in creating a message, then, is the amount of work required to derive it from a
hypothetical cause involving no unnecessary ad-hoc assumptions.

‘These ideas may be formalized in terms of algorithmic information theory: a
message’s most plausible cause is identified with its minimal algorithmic description,
and its “logical depth,” or plausible content of mathematical work, is (roughly
speaking) identified with time required to compute the message from this minimal
description. Formulating an adequately robust quantitative definition of depth is not
quite this simple and, in particular, requires a properly weighted consideration of
other descriptions besides the minimal one. When these refinements are introduced
[cf Appendix], one obtains a definition of depth that is machine independent, and
obeys the slow growth law, to within a polynomial depending on the universal
machine. The essential idea remains that a deep object is one that is implausible
except as the result of a long computation.

It is a common observation that the more concisely a message is encoded (e.g.,
to speed its transmission through a channel of limited bandwidth), the more random
it looks and the harder it is to decode. This tendency is carried to its extreme in
a message’s minimal description, which looks almost completely random (if z* had
any significant regularity, that regularity could be exploited to encode the message
still more concisely) and which, for a nontrivial (deep) message, requires as much
work to decode as plausibly went into producing the message in the first place. The
minimal description z#, thus, has all the information of the original message z, but
none of its value.

Returning to the realm of physical phenomena, we advocate identifying subjec-
tive organization or complexity with logical depth, in other words, with the length of
the logical chain connecting a phenomenon with a plausible hypothesis explaining
it. The use of a universal computer frees the notion of depth from excessive de-
pendence on particular physical processes (e.g., prebiotic chemistry) and allows an
object to be called deep only if there is no shortcut path, physical or non-physical,
to reconstruct it from a concise description. An object’s logical depth may, there-
fore, be less than its chronological age. For example, old rocks typically contain
physical evidence (e.g., isotope ratios) of the time elapsed since their solidification,
but would not be called deep if the aging process could be recapitulated quickly
in a computer simulation. Intuitively, this means that the rocks’ plausible history,
though long in time, was rather uneventful, and, therefore, does not deserve to be
called long in a logical sense. :

The relevance of logical depth to physical self-organization depends on the
assumption that the time development of physical systems can be efficiently sim-
ulated by digital computation. This is a rather delicate question; if by simulation
one means an exact integration of differential equations of motion, then no finite
number of digital operations could simulate even one second of physical time devel-
opment. Even when simulation is defined less restrictively (roughly, as an effective
uniformly convergent approximation by rational numbers), Myhill [1971] showed
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that there is a computable differentiable function with a noncomputable solution.
On the other hand, it remains plausible that realistic physical systems, which are
subject throughout their time development to finite random influences (e.g., thermal
and gravitational radiation) from an uncontrolled environment, can be efficiently
approximated by digital simulation to within the errors induced by these influences.
The evidence supporting this thesis is of the same sort, and as strong as, that sup-
porting the empirically very successful master equation [van Kampen, 1962}, which
approximates the time development of a statistical mechanical system as a sequence
of probabilistic transitions among its coarse-grained microstates.

Accepting the master equation viewpoint, the natural model of physical time
development, at least in a system with short-ranged forces, would be a three-
dimensional probabilistic cellular automaton. Such automata can be simulated in
approximately linear time by a universal three-dimensional cellular automaton each
of whose sites is equipped with a coin-toss mechanism; hence, time on such a univer-
sal automaton might be the most appropriate dynamic resource in terms of which
to define depth. Usually we will be less specific, since other reasonable machine
models (e.g., the universal Turing machines in terms of which algorithmic informa-
tion theory is usually developed) can simulate probabilistic cellular automata, and
one another, in polynomial time. We will assume conservatively that any f seconds
in the time development of a realistic physical system with N degress of freedom
can be simulated by probabilistic computation using time bounded by a polynomial
in Nt.

Although time (machine cycles) is the complexity measure closest to the in-
tuitive notion of computation work, memory (also called space or tape) is also
important because it corresponds to a statistical mechanical system’s number of
particles or degrees of freedom. The maximum relevant time for a system with N
degrees of freedom is of order 20(N) the Poincaré recurrence time; and the deepest
state such a system could relax to would be one requiring time 20(N) | but only
memory N, to compute from a concise description.

Unfortunately, it is not known that any space-bounded physical system or com-
puter can indeed produce objects of such great depth (exponential in N). This
uncertainty stems from the famous open P=?PSPACE question in computational
complexity theory, i.e., from the fact that it is not known whether there exist com-
putable functions requiring exponentially more time to compute than space. In
other words, though most complexity theorists suspect the contrary, it is possible
that the outcome of every exponentially long computation or physical time evolu-
tion in a space-bounded system can be predicted or anticipated by a more efficient
algorithm using only polynomial time.

A widely held contrary view among complexity theorists today, considerably
stronger than the mere belief that P is not equal to PSPACE, is that there are
“cryptographically strong” pseudorandom number generators [Blum-Micali, 1984;
Levin, 1985], whose successive outputs, on an N-bit seed, satisfy all polynomial time
(in N) tests of randomness. The existence of such generators implies that space-
bounded universal computers, and, therefore, any physical systems that mimic such
computers, can after all produce exponentially deep outputs.
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If, on the other hand, it turns out that P=PSPACE, then exponentially deep
N-bit strings can still be produced (by well-known “diagonal” method, the gist of
which is to generate a complete list of all shallow N-bit strings and then output
the first N-bit string not on the list), but the computations leading to these deep
objects will require more than polynomial space during their intermediate stages.

It is worth noting that neither algorithmic information nor depth is an effec-
tively computable property. This limitation follows from the most basic result of
computability theory, the unsolvability of the halting problem, and reflects the fact
that although we can prove a string nonrandom (by exhibiting a small program to
compute it), we can not, in general, prove it random. A string that seems shallow
and random might, in fact, be the output of some very slow-running, small pro-
gram, which ultimately halts, but whose halting we have no means of predicting.
This open-endedness is also a feature of the scientific method: a phenomenon that
seems to occur randomly (e.g., pregnancy) may later turn out to have a cause so re-
mote or unexpected as to have been overlooked at first. In other words, if the cause
of a phenomenon is unknown, we can never be sure that we are not underestimating
its depth and overestimating its randomness.

The uncomputability of depth is no hindrance in the present theoretical setting
where we assume a known cause (e.g., a physical system’s initial conditions and
equations of motion) and try to prove theorems about the depth of its typical
effects. Here, it is usually possible to set an upper bound on the depth of the effect
by first showing that the system can be simulated by a universal computer within
a time ¢ and then invoking the slow growth rule to argue that such a computation,
deterministic or probabilistic, is unlikely to have produced a result much deeper
than ¢. On the other hand, proving lower bounds for depth, e.g., proving that a
given deterministic or probabilistic cause certainly or probably leads to a deep
effect, though always possible in principle, is more difficult, because it requires

showing that no equally simple cause could have produced the same effect more
quickly.

lll. TOWARDS AN UNDERSTANDING OF THE NECESSARY
AND SUFFICIENT CONDITIONS FOR SELF-ORGANIZATION

We have already pointed out a mathematical requirement, namely the conjectured
inequality of the complexity classes P and PSPACE, necessary for a finite model
system to evolve to a state of depth comparable to its Poincare time. In this section,
we mention recent results in computation theory and statistical mechanics which
may soon leads to a comprehensive understanding of other conditions necessary
and sufficient for model systems to self-organize, i.e., to evolve deterministically or
with high probability to a state’s deep compared to the system’s initial condition.

It is clear that universal computation, and, hence, self-organization, can occur
without dissipatlion in reversible deterministic systems such as Fredkin and Toffoli’s
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“billiard ball model” [1982], which consists of classical hard spheres moving on a
plane with fixed obstacles (without loss of generality the array of obstacles may
be taken to be spatially periodic); or in Margolus’ billiard ball cellular automaton
[1984] which discretely simulates this model. In these models, the initial condition
must be low-entropy, because a reversible system cannot decrease its own entropy
(the continuous billiard ball model, because of the dynamical instability of its col-
lisions, in fact requires an initial condition with infinite negative entropy relative
to the random hard sphere gas). Moreover, if the system is to preform a nontrivial
computation, the initial condition must lack translational symmetry, because a de-
terministic system cannot break its own symmetries. It would suffice for the initial
condition to be periodic except at a single site, which would serve as the origin for
a depth-producing computation.

The systems just considered are noiseless. As indicated earlier, it is more realis-
tic to imagine that a physical system is subject to environmental noise, and to treat
its motion as random walk, rather than a deterministic trajectory, on the relevant
discrete or continuous state space.

In general, such noisy systems require at least some dissipation to enable them
to correct their errors and engage in a purposeful computation; the amount of
dissipation depends on the noise’s intensity and especially on its pervasiveness,
i.e., on whether it is considered to affect all, or only some aspects of the system’s
structure and operation. At the low end of the pervasiveness spectrum are systems
such as the clockwork computer of Bennett [1982], in which the noise causes only
transitions forward and backward along the intended path of computation, not
transitions from one computation into another, or transitions that degrade the
structure of the hardware itself. In such systems, all errors are recoverable and the
required dissipation tends to zero in the limit of zero speed. More pervasive noise
can be found in the situation of error-correcting codes, where some unrecoverable
errors occur but the decoding apparatus itself is considered perfectly reliable; and
in proofreading enzyme systems [cf Bennett, 1979], where the decoding apparatus
is unreliable but still structurally stable. These systems require finite dissipation
even in the limit of zero speed. Von Neumann’s [1952] classic construction of a
reliable computer from unreliable parts is also of this sort: all gates were considered
unreliable, but the wires connecting them were considered reliable and their complex
interconnection pattern structurally stable. Only recently has decisive progress been
made in understanding systems at the high end of the pervasiveness spectrum, in
particular, “noisy” cellular automata (henceforth NCA) in which all local transition
probabilities are strictly positive. For such an automaton, any two finitely differing
configurations are mutually accessible.

An NCA may be synchronous or asynchronous, reversible or irreversible. The
former distinction (i.e., between a random walk occurring in discrete time or con-
tinuous time) appears to have little qualitative effect on the computing powers of
the automata, but the latter distinction is of major importance. In particular, irre-
versible NCA can function as reliable universal computers [Gacs, 1983; Gacs-Reif,
1985], and can do so robustly despite arbitrary small perturbations of their tran-
sition probabilities; while reversible NCA, for almost all choices of the transition
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probabilities, are ergodic, relaxing to a structurally simple state (the thermody-
namic phase of lowest free energy) independent of the initial condition. Irreversibil-
ity enables NCA to be robustly nonergodic essentially by protecting them from
the nucleation and growth of a unique phase of lowest free energy [Toom, 1980;
Domany-Kinzel, 1984; Bennett-Grinstein, 1985].

(An NCA is considered reversible or nondissipative if its matrix of transition
probabilities is of the “miscroscopically reversible” form DS D1, where D is diag-
onal and S symmetric. In that case, a movie of the system at equilibrium would
look the same shown forwards as backwards and the stationary distribution can be
represented (exactly for asynchronous automata, approximately for synchronous)
as the Boltzmann exponential of a locally additive potential. On the other hand, if
the local transition probabilities are not microscopically reversible, the stationary
macrostate is dissipative (corresponding physically to a system whose environment
continually removes entropy from it), a movie of the system would not look the same
forwards as backwards, and the distribution of microstates, in general, cannot be
approximated by the exponential of any locally additive potential. Asynchronous
reversible NCA, otherwise known as generalized kinetic Ising models, are widely
studied in statistical mechanics.)

The computationally universal NCA of Gacs and Gacs-Reif are still somewhat
unsatisfactory because they require special initial conditions to behave in a non-
trivial manner. A truly convincing case of self-organization would be an NCA with
generic transition probabilities that would initiate a depth-producing computation
from generic initial conditions (e.g., a random soup). Such an automaton has not
been found, though Gacs believes it can be. If it is found, it will lend support to.
the philosophical doctrine that the observed complexity of our world represents an
intrinsic propensity of nature, rather than an improbable accident requiring special
initial conditions or special laws of nature, which we observe only because this same
complexity is a necessary condition for our own existence.

APPENDIX: MATHEMATICAL CHARACTERIZATION OF DEPTH

Two rather different kinds of computing resources have been considered in the the-
ory of computational complexity: static or definitional resources such as program
size, and dynamic resources such as time and memory. Algorithmic information
theory allows a static complexity or information content to be defined both for fi-
nite and for infinite objects, as the size in bits of the smallest program to computer
the object on a standard universal computer. This minimal program has long been
regarded as analogous to the most economical scientific theory able to explain a
given body of experimental data. Dynamic complexity, on the other hand, is usu-
ally considered meaningful only for infinite objects such as functions or sets, since
a finite object can always be computed or recognized in very little time by means
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of a table look-up or print program; which includes a verbatim copy of the object
as part of the program.

In view of the philosophical significance of the minimal program, it would be
natural to associate with each finite object the cost in dynamic resources of recon-
structing it from its minimal program. A “deep” or dynamically complex object
would then be one whose most plausible origin, via an effective process, entails a
lengthy computation. (It should be emphasized that just as the plausibility of a sci-
entific theory depends on the economy of its assumptions, not on the length of the
deductive path connecting them with observed phenomena, so the plausibility of
the minimal program, as an effective “explanation” of its output, does not depend
on its cost of execution.) A qualitative definition of depth is quoted by Chaitin
[1977], and related notions have been independently introduced by Adleman [1979)]
(“potential”) and Levin [Levin and V’jugin, 1977] (“incomplete sequence”).

In order for depth to be a useful concept, it ought to be reasonably machine-
independent, as well as being stable in the sense that a trivial computation ought
not to be able to produce a deep object from a shallow one. In order to achieve
these ends, it is ncessary to define depth a little more subtly, introducing a signifi-
cance parameter that takes account of the realtive plausibility of all programs that
yield the given object as output, not merely the minimal program. Several slightly
different definitions of depth are considered below; the one finally adopted calls an
object “d-deep with b bits significance” if all self-delimiting programs to compute
it in time d are algorithmically compressible (expressible as the output of programs
smaller than themselves) by at least b bits. Intuitively this implies that the “null”
hypothesis, that the object originated by an effective process of fewer than d steps,
is less plausible than a sequence of coin tosses beginning with b consecutive tails.

The difficulty with defining depth as simply the run time of the minimal pro-
gram arises in cases where the minimal program is only a few bits smaller than
some much faster program, such as a print program, to compute the same output
z. In this case, slight changes in £ may induce arbitrarily large changes in the run
time of the minimal program, by changing which of the two competing programs
is minimal. This instability emphasizes the essential role of the quantity of buried
redundancy, not as a measure of depth, but as a certifier of depth. In terms of the
philosophy-of-science metaphor, an object whose minimal program is only a few
bits smaller than its print program is like an observation that points to a nontrivial
hypothesis, but with only a low level of statistical confidence.

We develop the theory of depth using a universal machine U, similar to that
described in detail by Chaitin [1975B], which has two tapes, a program tape and
work tape. The expression U(s) = z will be used to indicate that the machine,
started with the binary string s on its program tape and a blank work tape, embarks
on a computation that halts after a finite number of steps, leaving the output x on
the work tape. The number of steps (run time) is denoted t(s). The work tape can
also be used as an auxiliary input, with U(s,w) denoting the output and (s, w)
the run time of a computation beginning with s on the program tape and w on

the work tape. In case the computation fails to halt, the functions U and ¢ are
considered to be undefined.
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The program tape is treated in a special way [Gacs, 1974; Levin, 1974; Chaitin,
1975] in order to allow a natural relative weighting of programs of different lengths.
The details of this treatment are described by Chaitin, but the essential feature is
that the machine itself must decide how many bits to read off its program tape,
without being guided by any special endmarker symbol. Another way of looking
at this is to say that the expression U(s,w) = = means that, if the machine were
given w on its work tape and any infinite binary sequence beginning with s on
its program tape, it would halt with the infinite program. This “self-delimiting”
formalism allows the algorithmic probability of an output z to be defined in a
natural way, as the sum of the negative binary exponentials of the lengths of all
programs leading to that output:

Pu(z) = Z?'M
{s:U(s) =z}

Here |s| denotes the length of the binary string s, regarded as a self-delimiting
program for the U machine. (Without the self-delimiting requirement, this sum
would, in general, diverge.) An analogous conditional algorithmic probability,
Pu(z/w), may be defined for computations that begin with a string w on the work
tape. This represents the probability that a program generated by coin tossing
would transform string w into string z.

Besides being self-delimiting, the U machine must be efficiently universal in
the sense of being able to simulate any other self-delimiting Turing machine with
additive increase in program size and polynomial increase in time and space. That
such machines exist is well known. The minimal program for a string z, denoted
z+, is the least string p such that U(p) = z. The algorithmic information or entropy
of a string H(z) may be defined either as the size of its minimal program, or the
negative base-two logarithm of its algorithmic probability, since it can be shown
that the difference between these two quantities is bounded by a constant depend-
ing on U but independent of z (this is another advantage of the self-delimiting
formalism). A string « is said to be compressible by b bits if its minimal program
is b bits shorter than z. Regardless of how compressible their outputs may be, all
minimal programs are incompressible to within an O(1) constant depending on the
standard machine. (If they were not, i.e., if for some s, = * x were significantly
shorter than z*, then z* would be undercut in its fole as executing z * x.) Finite
strings, such as minimal programs, which are incompressible or nearly so are called
algorithmically random. The above formulation in terms of halting, self-delimiting
programs appears the most natural way of defining information content for discrete
objects such as integers, binary strings, or Ising microstates.

To adequately characterize a finite string’s depth, one must consider both the
amount of redundancy and the depth of its burial. Several definitions are given
below; the best appears to be to say that a string = is (d,b)-deep, or d-deep with b
bits significance, if

i. every program to compute s in time < d is compressible by at least b bits.
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It can be shown that any (d, b)-deep string according to this definition is deep
in two other, perhaps more intuitive senses:

ii. computations running in time < d supply less than 1/20+9(1) of the string’s
algorithmic probability.

iii. the smallest program to compute z in time < d is at least b + O(1) bits larger

than the minimal program z*.

Alternative 2), perhaps the most natural (because it fairly weights all compu-
tations leading to z) is very close to the chosen definition, since it can be shown
(by a proof similar to that of Chaitin’s [1975B] theorem 3.2) that any (d, b)-shallow
string (one not (d, b)-deep) receives at least 1/25+9(1°8%) of its algorithmic probabil-
ity form programs running in time < d. Alternative 1) is favored because it satisfies
a sharper slow growth law. Alternative 3), perhaps the most obvious, might seri-
ously overestimate the depth of a string with a great many large fast programs,
but no single, small, fast program. Whether such strings exist is not known; if they
do exist, they should probably not be called deep, since they have a significant
probability of being produced by small, fast-running probabilistic algorithms.

It is obviously desirable that depth obey the slow growth law, 1.e., that no
fast, simple, deterministic or probabilistic algorithm be able to transform a shallow
object into a deep one. With the chosen definition of depth, it is easy to show
that this is the case: for any strings w and z, if w is less than (d,b) deep, and the
algorithmic probability for U to transform w (furnished as an auxiliary input on
the work tape) into & within time ¢ is at least 27, then s can be no more than
(d+t+4+ O(1), b+ k + O(1))-deep.

Similarly, depth can be shown to be reasonably machine-independent, in the
sense that for any two, efficiently universal, self-delimiting machines, there exists a
constant ¢ and a polynomial p such that (p(d), b + ¢) depth on either machine is a
sufficient condition for (d, b) depth on the other.

One may well wonder whether, by defining some kind of weighted average run
time, a string’s depth may reasonably be expressed as a single number. This may,
in fact, be done, at the cost of, in effect, imposing a somewhat arbitrary rate of
exchange between the two conceptually very different quantities’ run time and pro-
gram size. Proceeding from alternative definition 2) above, one might try to define
a string’s average depth as the average run time of all computations contributing to
its algorithmic probability. Unfortunately, this average diverges because it is domi-
nated by programs that waste arbitrarily much time. To make the average depth of
s depend chiefly on the fastest programs of any given size that compute s, it suffices
to use the reciprocal mean reciprocal run time in place of a straight average. The
reciprocal mean reciprocal depth of a string z is thus defined as

dome(@) = [So27M] /[ @ /ts))],
{s:U(s)=2} {s:U(s)=rx}
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In this definition, the various computations that produce z act like parallel
resistors, the fast computations in effect short-circuiting the slow ones. Although
reciprocal mean reciprocal depth doesn’t satisfy as sharp a slow growth law as
two-parameter depth (multiplicative rather than additive error in the computation
time), and doesn’t allow strings to have depth more than exponential in their length
(due to the short-circuiting of slower programs, no matter how small, by the print
program), it does provide a simple quantitative measure of a strong’s nontriviality.

An even rougher, qualitative distinction may be drawn between “deep” and
“shallow” strings according to whether their reciprocal mean reciprocal depth is
exponential or polynomial in the strings’ length, or some other parameter under
discussion. This rough dichotomy, in which all merely polynomially-deep strings are
called shallow, is justified by the typically polynomial cost for one machine model to
simulate another, and the consequent arbitrariness in the definition of computation
time.

ACKNOWLEDGEMENTS

These ideas developed over many years with the help of countless discussions, espe-
cially with Gregory Chaitin, Rolf Landauer, Peter Gacs, Leonid Levin, Tom Toffoli,
Norman Margolus, and Stephen Wolfram.



